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Abstract— The K-connected Deployment and Power Assign-
ment Problem (DPAP) in WSNs aims at deciding both the sensor
locations and transmit power levels, for maximizing both the
network coverage and lifetime under K-connectivity constraints,
in a single run. Recently, it is shown that the Multi-Objective
Evolutionary Algorithm based on Decomposition (MOEA/D) isa
strong enough tool for dealing with unconstraint real life prob-
lems (such as DPAP), emphasizing the importance of incorporat-
ing problem specific knowledge for increasing its efficiency. Since
the K-connected DPAP requires constraint handling, several
techniques are investigated and compared, including a DPAP-
specific Repair Heuristic (RH) that transforms an infeasible
network design into a feasible one and maintains the MOEA/D’s
efficiency simultaneously. This is achieved by alternatingbetween
two repair strategies, which favor one objective each. Simulation
results have shown that the MOEA/D-RH performs better than
the popular constrained NSGA-II in several network instances.

I. I NTRODUCTION

The Deployment and Power Assignment Problem [1], [2],
[3] (DPAP) in WSNs [4] aims at deciding both optimal sensor
(a) locations (deployment [5]) and (b) transmit power levels
(power assignment [6]) for maximizing the (i) coverage and
(ii) lifetime objectives in a single run. DPAP is typical for
applications which invoke a limited number of expensive
sensors, where their operation is affected by their position and
communication. In that case, the application might favor the
use of a centralized or even an offline algorithm to compute the
decision variables, prior deployment. In WSNs, connectivity is
crucial for most applications [7], [8], since a possible partition
of the network into disjoint parts may cause undesirable
effects, such as decreasing the coverage and consequently the
amount of information forwarded to the interested users. A
natural generalization of connectivity is K-connectivityor K-
fault tolerance [9], [10]. Fault tolerance is a central challenge
in WSN design, since the failure of the battery constrained
sensors is very common in most applications. A WSN design
is usually self-healing when each sensor sustainsK-1 faulty
neighbors (i.e.K-fault tolerant WSN design). However, most
studies [7], [8], [9], [10] focus at deciding either (a) or (b),
for maximizing (i) or (ii) individually, or by constrainingone
and optimizing the other while maintaining connectivity (i.e.
K=1) and/or designingK-fault tolerant WSNs. This often
results in ignoring and losing “better” solutions, since the
WSN coverage and lifetime are conflicting objectives and
warrant a trade-off. Moreover, the two decision variables
highly influence both objectives and constraints, and should be

optimized simultaneously [1], [2]. Thus, we have considered
it important and challenging to investigate the multiobjective
K-connected DPAP in WSNs.

In [1], [2], [3], we have demonstrated that the Multi-
Objective Evolutionary Algorithm based on Decomposi-
tion [11] (MOEA/D) is a strong tool to tackle unconstraint
real-world problems (e.g. DPAP) emphasizing the importance
of incorporating WSN knowledge for increasing its efficiency.
However, the addition of constraints in DPAP necessitates con-
straint handling and render the tailoring of the existing DPAP-
specific MOEA/D, to match the abundance of the constraints
and objectives of the K-connected DPAP for WSN design in its
full practical complexity, as a major challenge. MOEAs with
constraint handling focus at obtaining a set of feasible Pareto
optimal solutions, i.e. Pareto Front (PF) [12], providing the
trade-off between two or more conflicting objectives. Feasible
are the solutions that satisfy all constraints, and infeasible
are those that do not. In the literature, there are several
constraint handling techniques [13], including the use of a
Penalty Function (PenF), adopting the rules of the Superiority
of Feasible solutions (SoFs) and using a Repair Heuristic
(RH) [14]. For the latter, Coello [13] has effectually declared
that “any heuristic which would guide the repair process, and
the success of this approach relies mainly on the ability of the
user to come up with such a heuristic.” Hence, RH is a good
choice when an infeasible solution can be easily transformed
to a feasible one without harming the optimization process and
is carefully designed with problem domain knowledge.

In this paper, the K-connected DPAP in WSNs is defined
and formulated as a constrained Multiobjective Optimization
Problem (MOP). Then, several constraint handling techniques
are designed and/or adopted by MOEA/D for tackling the
proposed MOP. Namely, 1) a PenF is defined for DPAP and
used for directing the search into the feasible regions of
the search space by penalizing the infeasible solutions. 2)
The proposed DPAP-specific RH is designed for transforming
an infeasible solution into a feasible one and maintaining
MOEA/D’s efficiency simultaneously, by alternating between
two repair strategies, which favor one objective each. 3) The
rules of the SoFs are adopted, initially proposed by Deb for
handling constraints with the popular Non-dominated Sorting
Genetic Algorithm II (NSGA-II) [12], which favor feasible
solutions over infeasible. Finally, MOEA/D and NSGA-II are
compared in several constrained DPAP network instances.



II. PROBLEM DEFINITION

A. System model and assumptions

Consider a 2-D static WSN formed by: a rectangular sensing
areaA, N homogeneous sensors and a static sinkH with
unlimited energy, placed at the center ofA. We assume a
perfect medium access control and we adopt the simple but
relevant path loss communication model [2]. In this model,
the transmit power level that should be assigned to a sensor
i to reach a sensorj is Pi = β × dα

ij , whereα ∈ [2, 6] is
the path loss exponent andβ = 1 is the transmission quality
parameter. The energy loss due to channel transmission isdα

ij ,
wheredi,j is the Euclidean distance between sensorsi andj.
The communication range of each sensori is Ri

c = dij , s.t.
Ri

c ≤ Rmax, whereRmax is the maximum communication
range that is determined by the maximum transmit power
level that a sensor can be assigned, denoted asPmax. The
assignedPi and the locationsLi = (xi, yi) are the DPAP’s
decision variables and are considered fixed for the whole
network lifetime, where(xi, yi) are sensori’s coordinates and
i = 1, . . . , N . The residual energy of sensori, at time t, is
calculated as follows:

Ei(t) = Ei(t − 1) − [Ei
tx(t) + Ei

rx(t) + Es] (1)

whereEi
tx(t) = k× (ri(t)+1)× (Pi×amp+Ect), Ei

rx(t) =
k× ri(t)×Ect is the amount of energy consumed by sensori
for transmission and reception, respectively,Es is the amount
of energy consumed for sensing and processingk, which is
the amount of data sensed and collected by a sensor with a
fixed sensing rangeRs, (ri(t) + 1) is the total traffic load
that sensori forwards towardsH at t (ri(t) is the traffic
load thati receives and relays and “+1” is the data packet
generated byi to forward its own data information),amp is the
power amplifier’s energy consumption andEct is the energy
consumption due to the transmitter and receiver electronics.

Furthermore, it is assumed thatA is divided into x × y
uniform consecutive grids to make the coverage problem more
computationally manageable. The size of the grids is several
times smaller thanπ ×Rs for a more accurate approximation
within the sensing disk. A sensing model based on the definite
range law approximation is considered [7],

g(x′, y′) =

{

1 if ∃j ∈ {1, ..., N}, d(xj,yj),(x′,y′) ≤ Rs,
0 otherwise,

(2)
is the monitoring status of a grid centered at(x′, y′) with 1
indicating that the grid is covered and0 otherwise.

Finally, the connectivity status of a sensorj is denoted as,

cj =

{

1 if j is K-connected,
0 otherwise,

(3)

where sensorj is usually considered K-connected [9], if it
directly communicates withH or if it sustains K neighbors
with positive advance [15] towardsH , considering the many-
to-one communication nature of WSNs.

B. Problem formulation

The K-connected DPAP in WSNs can be formulated as a
constrained MOP,
Given:

• A: 2-D plane of area sizex × y.
• N : number of sensors to be deployed inA.
• E: initial power supply, the same for all sensors.
• Rs: sensing range, the same for all sensors.
• Pmax : maximum transmission power level, the same for

all sensors.
Decision variables of solution X:

• Lj : the location of sensorj.
• Pj : the transmission power level of sensorj.

Objectives: Maximize coverageCv(X) and lifetimeL(X),
subject to K-connectivityCn(X) = 1.

The network coverageCv(X) is defined as the percentage
of the covered grids over the total grids ofA and is evaluated
as follows:

Cv(X) = [

x
∑

x′=0

y
∑

y′=0

g(x′, y′)]/(x × y) (4)

where,x× y is the total grids ofA andg(x′, y′) is calculated
using Equation (2).

The network lifetimeL(X) is defined as the duration from
the deployment of the network to the cyclet in which a sensor
j depletes its energy supplyE and is evaluated as follows:
Algorithm: Lifetime Evaluation

Step 0: Set t := 1; Ej(0) := E, ∀j ∈ {1, ..., N};
Step 1: For all sensorsj at each time intervalt do

Step 1.1:UpdateEj(t) according to Equation (1);
Step 1.2:Assign each incoming link of sensorj a

weight equal toEj(t);
Step 1.3:Calculate the shortest path fromj to H ;

Step 2: If ∃ j ∈ {1, ..., N} such thatEj(t) = 0 then stop
and set:

L(X) := t; (5)

Else t = t + 1, go to step 1;
The same algorithm can be easily modified to consider differ-
ent energy models in Step 1.1 (e.g. [2]) and routing algorithms
in Step 1.3 (e.g. geographical-based [15] routing algorithms).

The percentage of K-connected sensors inX can be mea-
sured as follows:

Cn(X) = |CS|/N (6)

whereCS = {j|cj = 1}, Cn(X) = 1 when all sensors are
K-connected andcj is calculated using Equation (3).

III. C ONSTRAINT HANDLING TECHNIQUES: THE

PROPOSEDREPAIR HEURISTIC (RH) IN MOEA/D

A. MOEA/D [11]: an overview

The MOP can be decomposed intom subproblems using
any technique that constructs aggregation functions, e.g.the



Weighted Sum Approach [11]. Then, a subproblemi with a
weight coefficientλi can be defined as:

max gi(X |λi) = λiL(X) + (1 − λi)Cv(X).

The dense-to-spread encoding representation is adopted [2].
The Internal Population,IP (stores the best solutions found
for each subproblemi during the search) is randomly initial-
ized. A new solutionO is generated by the genetic operators
(e.g. [2]) and a local heuristic (e.g. [3]) is applied to eachO to
produceX . In the update phase [11], theIP , the neighborhood
of X (i.e. the solutions of theT closest subproblems of
i in terms of their weight coefficients{λ1, · · · , λm}) and
the external population(EP ) (stores all the non-dominated
solutions found so far during the search) are updated withX .
The search stops after a predefined number of generations,
genmax. MOEA/D proceeds as in Algorithm 1.

Algorithm 1 MOEA/D framework
Input:
• network parameters (A, N , E, Rs);
• m : population size and number of subproblems;
• T : neighborhood size;
• uniform spread of weight coefficientsλ1, ..., λm;
• the maximum number of generations,genmax;
Output: the external population,EP .

Step 0-Setup:SetEP := ∅; gen := 0; IPgen := ∅;
Step 1-Decomposition:Initialize m subproblems.
Step 2-Initialization: Randomly generate an initial internal
populationIP0 = {Y 1, · · · , Y m};
Step 3: For each subproblemi = 1 to m do

Step 3.1-Genetic Operators [2]:Generate a new solu-
tion O by using the weight-based selection, the window
crossover and the adaptive mutation operators.
Step 3.2-Local heuristics: Apply an improvement [3]
and/or repair heuristic toO to produceX.
Step 3.3-Update Populations:UpdateIPgen, EP and the
T closest neighbors of subproblemi with X.

Step 4-Stopping criterion: If stopping criterion is satisfied, i.e.
gen = genmax, then stop and outputEP , otherwisegen =
gen + 1, go to Step 3.

A major advantage of MOEA/D, compared to other
MOEAs, is that each solution in the population is associated
with a scalar subproblem. Thus, in [1], [2], [3], we have shown
that MOEA/D can easily adopt different single objective
methods for optimizing each scalar subproblemi, accord-
ingly. This is achieved by designing problem specific genetic
operators/heuristics rising by each subproblemi’s objective
preference (i.eλi) and requirements. Theλi parameter is used
as a guide to the operators/heuristics for adjusting the degree
of network coverage and lifetime. In this paper, the main
focus is at constraint handling and specifically at the repair
heuristic, which aims at designing feasible and high quality
WSN topologies of different objective preferences, at the same
time.

B. Constraint Handling Techniques

The following constraint handling techniques were designed
and/or adopted for tackling theK-connected DPAP,

1) Penalty Function [13], PenF:transforms a constrained
MOP into an unconstrained one by subtracting a certain value
(known as penalty measured by a penalty function) from the
scalar fitness value, based on the amount of constraint viola-
tion. It aims at favoring the feasible solutions over infeasible
ones during the selection process. The amount of violation is
measured based on the percentage of sensors in the network
that violate the K-connectivity constraint. The penalty ofa
solutionX is measured as follows:

pn(X) = 1 − Cn(X),

whereCn(X) is calculated using Equation (6).
A constrained subproblemi can then be transformed into

an unconstrained one as follows:

max gi(X, λi) = [λiL(X) + (1 − λi)Cv(X)] − pn(X)

2) The superiority of feasible solutions [12], SoFs:A
comparison between two solutionsX andY of a subproblem
i is performed based on the following rules:

• If X is feasible andY is not feasible then selectX .
• If both X andY are feasible then select the one with the

highest scalar fitness.
• If both X andY are infeasible then select the one with the

least constraint violation, i.e. the least number of sensors
that violate the K-connectivity constraint.

It aims at favoring the good feasible, or least infeasible
solutions to be copied in the next generation.

3) DPAP-specific Repair Heuristic, RH:aims at transform-
ing an infeasible solutionX to a feasible solutionZ in such
a way that:

• the feasible solution is similar to the infeasible to support
the exploration behavior of the MOEA/D.

• the origin of infeasibility is used to support the exploita-
tion behavior of the MOEA/D.

Algorithm 2 The DPAP-specific Repair Heuristic (RH)
Input: A solution X;
Output: A feasible solutionZ;
Step 0: SetK; s;

Step 1: if Cn(X) =

�
1 goto Step 2;
0 goto Step 5;

Step 2: Find the origin of infeasibility, e.g. sensorj;
Step 3:

if λ
i

8>>>>>>>>>>><>>>>>>>>>>>: ≥ 0.5

8>>><>>>: Step 3.1:Divide the circle (r = Rmax)
centered atLH into s equal sectors;
Step 3.2:Find the sparsest sector;
Step 3.3:Uniformly randomly generate a new
locationL′

j in the sparsest sector, setPj = (dα
jH);

< 0.5

8><>: Step 3.4:Find theKth closest location toLj ,
e.g.Lv ∈ X ;
Step 3.5:Calculate a new locationL′

j using Eq. 7,
setPj = (Rj

c)
α;

Step 4: If ∃j|(xj , yj) ∈ X, cj 6= 1 then goto Step 2;
Step 5: OutputZ = X;

To achieve this, theλi weight coefficient of each subprob-
lem i is used as a guide to the RH for specifically repairing



(a) Repairing an infeasible solution with lowλi,
increasing lifetime.

(b) Repairing an infeasible solution with lowλi,
increasing coverage without affecting lifetime.

(c) Repairing an infeasible solution with high
λi, increasing coverage.

Fig. 1. Examples of repairing an infeasible solution for subproblems with low and highλi coefficients.

an infeasible solutionX based on the foresaid remarks and its
objective preference. The RH (outlined in Algorithm 2), has
the following characteristics:

• When λi is high, and subproblemi focuses at feasible
solutions with high network lifetime, the RH

1) divides the circle with radiusr = Rmax centered at
LH into s equal sectors (e.g.s = 4).

2) finds the sparsest sector (i.e. the sector with the
lowest number of sensors).

3) redeploys the origin of infeasibility, e.g.j atLj ∈ X ,
to a random locationL′

j within the sparsest sector,
such thatRj

c = djH ≤ Rmax and setsPj = (Rj
c)

α.

In this case, while the RH is repairing an infeasible net-
work design it might also provide the following benefits:

– supports the network load balancing and prevents
a premature energy exhaustion of the sensors that
are already directly connected toH , increasing the
network lifetime (Figure 1(a), forK = 1).

– covers any previously uncovered area close toH ,
increasing the network coverage without decreasing
the network lifetime (Figure 1(b), forK = 1).

• When λi is low, subproblemi focuses at feasible solu-
tions with high network coverage. The RH,

1) finds a sensorv, which is theKth closest positive-
advance neighbor of sensorj.

2) Then,j is redeployed to a newL′

j as follows,

L′

j = Lj + (dju − Rj
c) × (Lu − Lj)/dju (7)

where,u =

{

v if cj = 1, djv ≤ djH

H otherwise
,

Rj
c =

{

2Rs if Rmax ≥ 2Rs

Rmax otherwise

3) SetsPj = (Rj
c)

α.

This results in low sensing range overlaps between the sen-
sors that might increase the network coverage while repairing

the infeasible solution (Figure 1(c), forK = 1). If there does
not exist aL′

j that satisfiescj = 1 anddju < djH , thenj is
directly connected toH to repair the infeasibility.

IV. SIMULATION RESULTS AND DISCUSSION

The goals of our simulation studies are: 1) to demon-
strate the difficulty in obtaining feasible solutions for the
K-connected DPAP through a purely random process, 2) to
test the strength of the three constraint handling techniques
with MOEA/D at dealing with the K-connected DPAP and
to show the superiority of the proposed repair heuristic (RH)
that incorporates DPAP-specific knowledge. 3) To demonstrate
the effectiveness of the proposed DPAP-specific MOEA/D-RH
against the popular constrained NSGA-II (using the SoFs) in
various WSN instances, giving the trade-off of the objectives
and a variety of feasible network design choices.

TABLE I

NETWORK INSTANCES(NIN)

NIn A (m2) N Density (N/A)
1 2500(50× 50) 25 0.01 (25/2500)
2 2500(50× 50) 50 0.02 (50/2500)
3 2500(50× 50) 63 0.025 (63/2500)
4 10000(100× 100) 100 0.01 (100/10000)
5 10000(100× 100) 150 0.02 (150/10000)
6 10000(100× 100) 250 0.025 (250/10000)

Table I shows several network instances. In our simulation
studies we have investigated sixteen network instances, how-
ever, only six are presented here due to the page limit. In
all simulations, we have used the following network settings:
a = 2, Rs = 5m, Rmax = 10m, amp = 100pJ/bit/m2,
Es = Ect = 50nJ/b, k = 250bytes, E = 5J and square grids
with 1m side length. Moreover, we have used the following
algorithm settings:m = 120, crossover raterc = 1, mutation
rate rm = 0.1, tournament sizest = 10 andgenmax = 250,
T = 2 as in [1], [2], [3]. In all cases, lifetime is normalized
with the upper bound (Lmax) defined in [3].

Initially, to get an estimate of how difficult is to generate
feasible network designs in the proposed K-connected DPAP



TABLE II

SIMULATION RESULTS ON S = 30000 RANDOM NETWORK DESIGNS

Disconnected Sensors
NIn K Infeasible Sol. ̺ Total Average

1 29235.0 0.0255 275337.0 9.175
2 30000.0 0.0 511665.0 17.05

1 3 30000.0 0.0 649890.0 21.675
4 30000.0 0.0 717879.0 23.925
5 30000.0 0.0 741642.0 24.725

1 12870.0 0.571 16766.0 1.7
2 30000.0 0.0 110425.0 11.05

2 3 30000.0 0.0 214441.0 21.45
4 30000.0 0.0 321518.0 32.15
5 30000.0 0.0 405060.0 40.5

1 6030.0 0.799 5412.0 0.567
2 30000.0 0.0 82646.0 8.253

3 3 30000.0 0.0 174914.0 17.514
4 30000.0 0.0 293468.0 29.358
5 30000.0 0.0 411594.0 41.139

through a purely random process, we have measured (i) the
̺ = |F |/|S| metric, where|F | is the number of feasible
solutions and|S| is the total number of solutions generated,
(ii) the total number of infeasible solutions, (iii) the total and
(iv) the average number of disconnected sensors of30000
random trials in NIn1,2 and 3 withK ∈ {1, . . . , 5}. Note
that, disconnected sensors are those that are notK-connected.

The results of Table II show that the random process obtains
feasible solutions only whenK = 1. For K = 2 to 5, all
30000 network designs are infeasible in all network instances
(i.e. NIn1-3). Moreover, whenK = 1 and the density is
low (i.e. NIn1, N = 25), there are only2.55% feasible
solutions, which means29235 out of 30000 network designs
are infeasible, having about9/25 sensors disconnected per
network design (i.e. about36%). When the density is high
(e.g. NIn3,N = 63) this number decreases to about0.99%
(i.e. 0.567/63 sensors, on average). This is the reason why,
sometimes it is assumed [16] that a dense sensor deployment
implies network connectivity. Table II, however, shows that
even when the number of disconnected sensors is low, the
̺ = 79.9% indicates that a relatively high number of solutions
is still infeasible, i.e. about20.1% or 6030/30000 solutions.

Thereinafter, the three constraint handling techniques were
tested in NIn1 forK ∈ {1, . . . , 5} and S = m × genmax =
30000 in terms of the (i-iv) metrics, which are evaluated at
the beginning of each generation for PenF and SoFs, and
before repairing for RH. The results of Table III show that
MOEA/D w/RH helps the evolutionary process to obtain
feasible solutions for allKs. In contrast, MOEA/D w/SoFs
and w/PenH obtain infeasible solutions only whenK = 2 to
5 (i.e. 30000 infeasible solutions and̺ = 0.0). Besides, the
number of disconnected sensors obtained by MOEA/D w/RH
is lower than those obtained w/SoFs and w/PenH for allKs.

The hybridization of MOEA/D with each constraint han-
dling technique is compared in NIn1-3 forK = 1, in terms
of the following performance metrics:C(A, B) measures the
solutions in an algorithm A’s PF dominated by the solutions
in an algorithm B’s PF, the smallerC(A, B) is the better
algorithm A is.∆(A) shows the diversity of the PF obtained
by algorithm A, i.e. the spread/variety of the network design
choices.∆ = 0 is the maximum, which means that the

TABLE III

SIMULATION RESULTS OF MOEA/D W/RH, W/SOFS AND W/PENF

Disconnected Sensors
NIn K Infeasible Sol. ̺ Total Average

MOEA/D w/RH
1 27751.0 0.075 153857.0 5.12
2 19665.0 0.345 52634.0 1.754
3 20106.0 0.330 60080.0 2.0
4 20448.0 0.318 70083.0 2.33
5 21898.0 0.270 80357.0 2.67

MOEA/D w/SoFs
1 27941.0 0.069 197800.0 6.59

1 2 30000.0 0.0 313096.0 10.43
3 30000.0 0.0 458423.0 15.28
4 30000.0 0.0 558941.0 18.63
5 30000.0 0.0 625390.0 20.84

MOEA/D w/PenF
1 27892.0 0.070 196318.0 6.54
2 30000.0 0.0 159560.0 5.31
3 30000.0 0.0 217785.0 7.25
4 30000.0 0.0 242473.0 8.08
5 30000.0 0.0 289071.0 9.63

solutions are evenly spread along the PF.NDS(A) is the total
number of non-dominated solutions obtained by algorithm A,
the higher the NDS is the better algorithm A is. Finally,
CPU(A) measures the total computational effort of A.
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Fig. 2. The number of disconnected sensor per generation obtained by
MOEA/D with RH, SoFs and PenF in NIn1-3, K=1.

Figure 2 examines the total number of disconnected sensors
(ds) obtained by MOEA/D with each technique. In NIn1, all
techniques begin with about 1100 ds. The latter is sharply
decreased to about 600 ds after one generation when RH
is adopted and is smoothly decreased to about 800 ds after
about 20 generations when PenF and SoFs are adopted. This
indicates that RH directs the search into the feasible regions of
the search space more effectively. When the network becomes
denser (NIn2,3) the number of ds decreases and the three tech-
niques perform similarly. Nevertheless, the statistical results,
summarized in Table IV, show that RH is more beneficial for
MOEA/D’s performance than PenF and SoFs. MOEA/D w/RH
provides a better average∆ metric and about 0.7 more NDS.
In terms of quality, the NDS obtained by MOEA/D w/RH



TABLE IV

SIMULATION RESULTS FORMOEA/D WITH RH, SOFS AND PENF, K = 1

∆ NDS CPU (hrs) C

NIn RH SoFs PenF RH SoFs PenF RH SoFs PenF RH,SoFs SoFs,RH RH,PenF PenF,RH
1: 0.9075 0.9701 0.9627 11 7 7 0.1296 0.0976 0.0815 0.0 0.8571 0.0 0.7143
2: 0.9776 0.9642 0.9797 7 8 5 0.2611 0.1514 0.1137 0.3333 0.7143 0.5 0.4
3: 0.9799 0.9787 0.9763 7 7 5 0.3194 0.2001 0.1817 0.0 1.0 0.0 0.6

Av.: 0.9550 0.9710 0.9729 8.3333 7.3333 5.6667 0.2367 0.1497 0.1257 0.1111 0.8571 0.1667 0.5714
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Fig. 3. Comparison of MOEA/D and NSGA-II in NIn1-6, K=1

dominate85% and 57%, on average, of the NDS obtained
by MOEA/D w/SoFs and MOEA/D w/PenF, respectively. Its
superiority is at the cost of a slightly higher CPU effort.

TABLE V

SIMULATION RESULTS FORMOEA/D (MD) AND NSGA-II (NG)

∆ NDS CPU (hrs) C

NIn Md Ng Md Ng Md Ng Md,Ng Ng,Md
1: 0.854 0.943 15 8 0.17 0.2 0 1
2: 0.873 0.919 14 10 0.26 0.31 0 1
3: 0.841 0.899 14 8 0.33 0.39 0 1
4: 0.928 0.989 13 10 0.88 1.22 0 1
5: 0.906 0.984 12 12 1.59 1.71 0 1
6: 0.891 0.959 12 13 2.94 2.98 0 1

Av.: 0.882 0.948 13.3 10.1 1.02 1.135 0 1

Finally, MOEA/D w/RH is compared with NSGA-II in
NIn1-6. NSGA-II adopts the SoFs as proposed by [12] and the
same genetic operators as in [2], i.e. a tournament selection,
a two-point crossover and a random mutation operator. The
algorithm settings and the function evaluations are the same
in both MOEAs for fairness. Table V and Figure 3 show
the superiority of MOEA/D in all instances. Specifically,
MOEA/D obtains a more diverse PF in less CPU time, which
has three additional NDS, on average, and dominates all NDS
of the PF obtained by NSGA-II and none is dominated.

V. CONCLUSIONS

A K-connected DPAP in WSNs is defined and formulated
as a constrained MOP and a MOEA/D is specialized. Several
constraint handling techniques are designed and/or adopted
by MOEA/D, including a DPAP-specific repair heuristic that
incorporates WSN-knowledge for transforming an infeasible
solution to a feasible one. The repair heuristic alternates
between two repair strategies, each favoring one objective,
for increasing the MOEA/D’s performance at the same time.
Simulation results have shown the difficulty in randomly ob-
taining feasible solutions for the proposed K-connected DPAP,
the necessity of incorporating WSN-knowledge while handling
constraints and the superiority of the DPAP-specific MOEA/D
against the popular NSGA-II in several WSN instances.
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